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Abstract—Multidimensional scaling (MDS) is a class of
projective algorithms traditionally used to produce two-
or three-dimensional visualizations of datasets consisting
of multidimensional objects or interobject distances. Re-
cently, metric MDS has been applied to the problems
of graph embedding for the purpose of approximate
encoding of edge or path costs using node coordinates
in metric space. Several authors have also pointed out
that for data with an inherent hierarchical structure,
hyperbolic target space may be a more suitable choice for
accurate embedding than Euclidean space. In this paper
we present the theory and the implementation details of
MDS-PD, a metric MDS algorithm designed specifically
for the Poincaré disk model of the hyperbolic plane. Our
construction is based on an approximate hyperbolic line
search and exemplifies some of the particulars that need to
be addressed when applying iterative optimization methods
in a hyperbolic space model. MDS-PD can be used both
as a visualization tool and as an embedding algorithm. We
provide several examples to illustrate the utility of MDS-
PD.

Index Terms—dimensionality reduction, hyperbolic em-
bedding, hyperbolic MDS, network graph, steepest descent,
visualization

I. INTRODUCTION

Metric multidimensional scaling (MDS) (Carroll and
Arabie 1980; De Leeuw and Heiser 1982; Cox and Cox
2000; Borg and Groenen 2005) is a class of algorithms
that take as input some or all of the inter-object distances
(pair dissimilarities) for n objects and produce as output
a point configuration of n points specified by their
coordinates in a chosen d-dimensional target space. The
goal is to return the point configuration whose inter-
point distances in the d-dimensional space match as
closely as possible the original input distances. Usually,
this goal is pursued by minimizing a scalar badness-
of-fit objective function defined for an arbitrary n-point
configuration in the target space; ideally, the output of an
MDS algorithm should be the configuration that achieves
the global minimum of the objective function.

If the target space dimension is 2 or 3, the output con-
figuration can be graphically represented, which makes
MDS a visualization tool seeking to preserve the input
distances as faithfully as possible, thus clustering the
objects in the target space by similarity. More generally,
for a given dimension d, metric multidimensional scaling
can be used to embed an input set of dissimilarities of
the original objects into a d-dimensional metric space.

In order to apply MDS, several design decisions must
be made. One first needs to choose a target metric space
of appropriate dimension d and a corresponding distance
function. An objective function should be chosen so
that it provides a suitable measure of inaccuracy for a
given embedding application. If the objective function
is nonlinear but satisfies some mild general conditions
(smoothness), a numerical optimization method can be
chosen (e.g. Nocedal and Wright 1999) for the imple-
mentation of the embedding algorithm.

The Euclidean plane is the most common choice
of target space for visualization applications due to
its simplicity and intuitiveness. Spherical surface can
be used, for example, to avoid the edge effect of a
planar representation (Cox and Cox 1991). In general,
MDS on curved subspaces of Euclidean space can be
viewed as MDS in a higher dimensional Euclidean space
constrained to a particular surface (Bentler and Weeks
1978; Bloxom 1978).

The use of metric MDS in the hyperbolic plane was
proposed in the context of interactive visualization by
Walter (2004), inspired by the focus and context hyper-
bolic tree viewer of Lamping and Rao (1994). The use of
MDS in (Walter 2004) inherently generalized the appli-
cability of the method from tree structures to continuous-
valued multidimensional data or pair distances. It was
noted that the curious property of exponential growth
of the “available space” in the hyperbolic models as
one moves towards infinity, makes planar hyperbolic
embedding a suitable choice for both hierarchical and
high-dimensional data. The adequacy of the hyperbolic
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spaces for embedding of various data was also studied
and confirmed in the contexts of network embedding for
path cost estimation (Shavitt and Tankel 2008) and rout-
ing (Kleinberg 2007; Krioukov et al. 2009; Cvetkovski
and Crovella 2009; Papadopoulos et al. 2010).

A least squares formulation of MDS, to be used
in conjunction with an iterative numerical method for
unconstrained optimization was proposed by Sammon
(1969). The objective function therein (the Sammon
stress criterion) was defined as a normalized sum of the
squared differences between the original dissimilarities
and the embedded distances of the final point configu-
ration. To minimize this function, Sammon proposed a
descent method with step components calculated using
the first two component derivatives of the objective func-
tion. Walter (2004) adopted Sammon’s badness-of-fit
measure for hyperbolic MDS but observed that applying
Sammon’s iterative procedure in the Poincaré disk (PD)
using exact derivatives is difficult due to the complicated
symbolic expressions of the second derivative of the
hyperbolic distance function in this model. Subsequently,
the Levenberg-Marquardt least squares method was ap-
plied in (Walter 2004), using only first-order derivatives
for the optimization, but the details of applying this
iterative method in the Poincaré disk were not elaborated.

In this paper we present MDS-PD, a metric multidi-
mensional scaling algorithm using the Poincaré disc (PD)
model. MDS-PD is based on a steepest decent method
with line search. We show the details of the steepest
descent along hyperbolic lines in the PD and present a
suitable approximate hyperbolic line search procedure.
MDS-PD is applicable in its own right; additionally, its
construction also illustrates some of the specifics that
need to be considered when transferring more sophis-
ticated iterative optimization methods to the PD or to
other hyperbolic models. Based on this development, we
show the particulars of a numerical implementation of
MDS-PD and use this algorithm to carry out numerical
experiments on several datasets using least squares cri-
terion functions. Our simulation results indicate that the
performance of a steepest descent method for minimizing
a least squares objective on large configurations in the
PD is notably dependent on the line search method used,
and that binary hyperbolic line search provides markedly
better convergence and cost properties for MDS-PD
compared to more sophisticated or precise methods.

The rest of this paper is organized as follows. Section
II consolidates the notation and concepts from hyperbolic
geometry that will be used throughout, and proceeds to

develop two of the building blocks of MDS-PD – steep-
est descent in the PD and a corresponding hyperbolic
line search. Section III considers particular objective
functions and gradients and further discusses properties
and applicability of multidimensional scaling in the PD.
Section IV presents illustrative examples of MDS-PD
operation in the context of synthetic as well as real-world
input data. Related work is discussed in Section V and
concluding remarks are given in Section VI.

II. A DESCENT METHOD FOR THE POINCARÉ
DISK

We start this section by introducing our notational
conventions and establishing some properties of the
Poincaré disk that will be useful in the subsequent devel-
opment. This will allow us to formally define a Poincaré-
disk specific descent method and a binary hyperbolic
line search algorithm, that together make a simple, yet
efficient iterative minimization method for this model of
the hyperbolic plane.

A. Preliminaries

The Poincaré Disk model of the hyperbolic plane is
convenient for our considerations since it has circular
symmetry and a closed form of the inter-point distance
formula exists (Anderson 2007). We will be using com-
plex rectangular coordinates to represent the points of
the hyperbolic plane, making the PD model a subset of
the complex plane C:

D= {z ∈ C | |z|< 1} . (1)

The hyperbolic distance between two points z j and zk
in D is given by

dD (z j,zk) = 2atanh

∣∣z j− zk
∣∣∣∣1− z jzk
∣∣ , (2)

where z denotes the complex conjugate.
Möbius transformations are a class of transformations

of the complex plane that preserve generalized circles.
The special Möbius transformations that take D to D and
preserve the hyperbolic distance have the form

T (z) =
az+b
bz+a

, a,b ∈ C, |a|2−|b|2 6= 0. (3)

Given a point z0 ∈ D and a direction γ ∈ C with
|γ|= 1, we can travel a hyperbolic distance s≥ 0 along
a hyperbolic line starting from z0 in the direction γ ,
arriving at the point z′0.



3

Lemma 1. For z0 ∈ D, γ ∈ C with |γ| = 1, and s ≥ 0,
the point

z′0 =
γ tanh s

2 + z0

z0γ tanh s
2 +1

(i) belongs to the hyperbolic ray passing through z0 and
having direction γ at z0, and
(ii) dD (z0,z′0) = s.

Proof: Given a point z0 ∈ D and a direction γ ∈ C
with |γ| = 1, the hyperbolic ray in D passing through
z0 and having direction γ at z0 can be parametrized by
r ∈ [0,1) as

f (r) =
rγ + z0

rγz0 +1
. (4)

Noting that (4), seen as a function of z = rγ:

T (z) =
z+ z0

zz0 +1

is a Möbius transformation taking D to D and preserving
hyperbolic distances, we see that

dD ( f (r) ,z0) = dD (0,r) = ln
1+ r
1− r

whence it follows that moving z0 along a hyper-
bolic line in the direction γ by a hyperbolic distance
s = ln((1+ r)/(1− r)) we arrive at the point z′0 =
f
(
tanh s

2

)
.

Next, we introduce some of the notation that will be
used throughout.
• Let the point configuration at iteration t = 1,2, . . .T

consist of n points in the Poincaré disk D

z j (t) , j = 1 . . .n

represented by their rectangular coordinates:

z j (t) = y j,1 (t)+ iy j,2 (t) , i =
√
−1, y j,1, y j,2 ∈ R

with
∣∣z j (t)

∣∣< 1.
• We also use vector notation to refer to the point

configuration

z(t) =
[

z1 (t) z2 (t) . . . zn (t)
]T

= y1 + iy2 =

=
[

y1,1 (t) y2,1 (t) . . . yn,1 (t)
]T

+

i
[

y1,2 (t) y2,2 (t) . . . yn,2 (t)
]T

,

where [·]T in this work indicates the real matrix
transpose (to be distinguished from the complex
conjugate transpose.)

• The distance matrix for a given point configuration
z is the real valued symmetric matrix D(z) =

[
d jk
]

n×n whose entry d jk is the hyperbolic distance
between points z j and zk in the configuration z:

d jk = dD (z j,zk) .

• The dissimilarity matrix ∆=
[
δ jk
]

n×n is a symmet-
ric, real-valued matrix containing the desired inter-
point distances of the final output configuration (the
dissimilarities). The diagonal elements are δ j j = 0
and all other entries are positive real numbers:
δ jk = δk j > 0 for j 6= k.

• The indicator matrix I =
[
I jk
]

n×n is a symmetric
0-1 matrix, used to allow for missing dissimilarity
values. The entries of I corresponding to missing
values in ∆ are set to 0. All other entries are set to
1.

• The weight matrix W =
[
w jk
]

n×n is a symmetric,
real-valued matrix introduced to enable weighting
of the error terms for individual pairs of points in
the objective function sum. For convenience, w jk
corresponding to missing dissimilarities are set to
some finite value, e.g. 1.

• The objective function to be minimized is the
embedding error function Et = Et (z,∆,W,I) that,
given the sets of dissimilarities and weights, as-
sociates to a configuration z an embedding error
Et . An example of an error function is the sum of
relative squared differences

Et (z,∆,W,I) =
n

∑
j=1

n

∑
k= j+1

w jkI jk

(
d jk (t)−δ jk

δ jk

)2

.

(5)
The objective function can optionally be normalized
per pair by dividing with the number of summands(
n2−n

)
/2.

B. Descent in the Poincaré disk

Given a configuration of points z, matrices ∆, W,
and I, the distance function dD (z j,zk), and an objective
function E (z,∆,W,I), define

g = ∇E def
=


∂E

∂y1,1
+ i ∂E

∂y1,2
∂E

∂y2,1
+ i ∂E

∂y2,2
...

∂E
∂yn,1

+ i ∂E
∂yn,2

=


g1
g2
...

gn

 . (6)

According to Lemma 1, moving the points z1, . . . ,zn of
the configuration z along distance realizing paths in the
PD defined respectively by the directions −g1, . . . ,−gn



4

1

2

3

4

Figure 1. An example of moving a 4-point configuration in a given
(descent) direction along distance realizing paths of the Poincaré disk

at z (Fig. 1) will result in configuration z′ with points

z′j =
−rg j + z j

−rg jz j +1
(7)

where r≥ 0 is the step-size parameter which determines
the hyperbolic distances s j traveled by z j:

s j = ln
1+ r

∣∣g j
∣∣

1− r
∣∣g j
∣∣ . (8)

The PD model (1) implies the constraints
∣∣z j
∣∣< 1 for

the point coordinates. Still, the optimization on the PD
can be viewed as unconstrained by observing that the
constraints

∣∣∣z′j∣∣∣< 1 will not be violated while moving a
configuration z in D if the distances s j traveled by each
point are always kept finite, i.e.

sM = max js j < ∞. (9)

Since (9), according to (8), corresponds to rmax j
∣∣g j
∣∣<

1, we have the constraint on r

r <
1
‖g‖

∞

.

When implementing iterative descent minimization
methods with line search in the Poincaré disk, it is
important to specify a hyperbolic distance window sM
along the descent lines where the next configuration will
be sought. In this case the corresponding value of the
parameter r is

rM =
1
‖g‖

∞

· tanh
sM

2
<

1
‖g‖

∞

. (10)

Since the Poincaré disk model is conformal, following
the direction −g (the opposite of (6)) corresponds to the
steepest descent optimization method. Moving the point
configuration along hyperbolic lines (distance realizing

paths), on the other hand, ensures that the steepest
descent direction is exhausted most efficiently given the
current information about the objective function.

C. A Steepest Descent Algorithm for the PD

Figure 2 shows a framework for MDS-PD.

Algorithm MDS-PD

Input data:
an initial configuration z(1)
the dissimilarities ∆, weights W, indicators I

Input parameters:
an objective function E (z,∆,W,I)
the stopping tolerances εE , ε∆E , εg, εr, TM

Output:
a final point configuration z(T )
a final embedding error ET

Initialize:
t← 1; sM ← 10; E−1← ∞; z← z(1); . . . . . . . {2.1}

Loop:
E← E (z,∆,W,I); g← ∇E (z,∆,W,I); . . . . .{2.2}
rM ← 1

‖g‖∞
· tanh sM

2 ; . . . . . . . . . . . . . . . . . . . . . . . . {2.3}
Break if

E < εE
or E−1−E < ε∆E
or ‖g‖

∞
< εg

or rM < εr
or t > TM;

 . . . . . . . . . . . . . . {2.4}

E−1← E;
r←HypLineSearch(E(z,∆,W,I),−g,0,rM); . {2.5}
∀ j ∈ {1..n}, z j← −rg j+z j

−rg jz j+1 ; . . . . . . . . . . . . . . . . . {2.6}
t← t +1;

Return z(T )← z and ET ← E (z,∆,W,I).

Figure 2. MDS-PD

The input data of MDS-PD consists of the initial con-
figuration z(1), and the input metric: the dissimilarities
∆ with the associated weights W and the indicators of
missing dissimilarities I. The input parameters are the
objective error function E (z,∆,W,I) and the stopping
tolerances εE , ε∆E , εg, εr, and TM . The output of MDS-
PD consists of the final point configuration z(T ) and its
associated embedding error ET = E (z(T ) ,∆,W,I).

The initialization {2.1} sets the maximum hyperbolic
distance sM that can be traveled by any point of the
configuration, and the previous value of the embedding
error E−1.

Each iteration starts by determining the gradient of
the error in the current configuration {2.2} and the
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corresponding window rM {2.3} for the parameter r
(Eq. (10)). A hyperbolic line search (described in Sec.
II-D) is performed {2.5} in the direction of the steepest
descent−g of the embedding error and the resulting step-
size parameter r is used in {2.6} to arrive at the next
configuration as in (7).

Several stopping criteria are used (line {2.4}) to
terminate the search. Ideally, the algorithm exits when
the embedding error is close to 0 (E < εE). Termination
also occurs in the cases when the error decreases too
slowly (E−1−E < ε∆E), or when the gradient or the step-
ping parameter become too small (‖g‖

∞
< εg, rM < εr).

Finally, TM , the maximum allowed number of iterations,
is used as a guard against infinite looping.

The line search subprogram used in {2.5} is described
next.

D. Approximate Hyperbolic Line Search

An exact line search could be used in line {2.5} (Fig.
2) to determine a value for the step size r such that the
corresponding new configuration {2.6} achieves a local
minimum of the embedding error along the search path
with tight tolerance:

r ≈ argminr∈[0,rM ]q(r) , (11)

where q(r) is the embedding error as a function of r.
However, increasing the precision of this computation

is not essential to the convergence performance since the
steepest descent search direction is only locally optimal.
Furthermore, exact line search can fail to converge to
a local minimum even for a second degree polynomial
due to finite machine precision (Frandsen et al. 2004). It
is now accepted in the numerical optimization literature
that approximate line search provides convergence rates
comparable to the exact line search while significantly
reducing the computational cost per line search. In fact,
the step calculation used in Sammon (1969) is a “zero-
iteration” approximate line search, where the step size is
simply guessed based on the first two derivatives of the
error. Conceivably, the simplest inexact step calculation
would guess the step size based only on the directional
gradient at the current configuration.

Approximate line search procedures aim to reduce the
computational cost of determining the step parameter by
posing weaker conditions on the found solution: Rather
than searching for a local or global minimizer of q(r)
on (0,rM], a value is returned by the line search function
as satisfactory if it provides sufficient decrease of the
objective function and sufficient progress toward the

r
pq′ (0)

slope q′ (0)

slope

acceptable acceptable

λ (r) q(r)

rM

Figure 3. Acceptable step lengths for inexact line search obtained
from the sufficient decrease condition.

solution configuration. A popular approach to defining
sufficient decrease is to define the “roof” function

λ (r) = q(0)+ p ·q′ (0) · r, 0 < p < 1 (12)

which is a line passing through (0, q(0)) and having a
slope which is a fraction of the slope of q(r) at r = 0.
With this function, we define that sufficient decrease is
provided by all values of r such that

q(r)< λ (r) , r ∈ (0,rM] (13)

Fig. 3 shows an example of acceptable step length
segments obtained from the sufficient decrease condition
(13).

To ensure sufficient progress, we adopt a binary
search algorithm motivated by the simple backtracking
approach (e.g. Nocedal and Wright (1999)). The details
are given in Fig. 4.

We start the line search with an initial guess r0 for
the step size parameter, and in the expansion phase
{4.1} we double it until it violates the window rM
or the sufficient decrease condition. In the reduction
phase {4.2}, we halve r until it finally satisfies both the
window requirement r < rM and the decrease criterion
q(r)< λ (r).

We observe that, when started at a point with nonzero
gradient, the line search will always return a nonzero
value for r. Since the returned acceptable step r is such
that the step 2 · r is not acceptable, there will be a
maximum acceptable point rm from the same acceptable
segment as r, such that r ≤ rm < 2 · r, whence r > rm/2.
In other words, the returned value is always in the upper
half of the interval [0,rm] and we accept this as sufficient
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Procedure HypLineSearch

Input data:
an initial guess of the step parameter r0
the maximum step value rM
the function q(r)

Input parameters:
the slope parameter p for the roof function λ (r);

Output:
an acceptable step parameter r

Initialize:
r← r0;

While r < rM and q(r)< λ (r) ,
r← 2 · r; . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . {4.1}

While r < rM or q(r)> λ (r) ,
r← r/2; . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .{4.2}

Return r.

Figure 4. Line search procedure for MDS-PD

progress toward the solution, thus eliminating some more
computationally demanding progress criteria that would
require calculation of q′(r) at points other than r = 0
or cannot always return a nonzero r (cf. Nocedal and
Wright 1999; Frandsen et al. 2004).

It remains to show how to calculate the slope of λ (r),
that is pq′ (0) (Eq. 12). Given a configuration z and a
direction −g =−∇E (z,∆,W,I), the configuration z′ as
a function of r (7) can be conveniently represented as a
column-vector function

M(−rg,z) (14)

whose j-th entry is the Möbius transform

M j (r) =
−rg j + z j

−rg jz j +1
.

The associated embedding error as a function of r is then

q(r) = E (M(−rg,z) ,∆,W,I) , (15)

and it can be easily shown that its slope is given by

q′ (r) =
d
dr

q(r) =

=
(
ReM′ (−rg,z)

)T Re∇E (M(−rg,z) ,∆,W,I)

+
(
ImM′ (−rg,z)

)T Im∇E (M(−rg,z) ,∆,W,I)

where the entries of M′ (−rg,z) are given by

M′j (r) =
d
dr

M j (r) = g j

∣∣z j
∣∣2−1

(1− rg jz j)
2 .

We thus have a general explicit formula for calculating
q′ (r) given a configuration z and the corresponding
gradient g of E at z. In particular, this formula can be
used to calculate pq′ (0), the slope of λ (r).

III. MULTIDIMENSIONAL SCALING IN THE
PD

A. Objective Functions and Gradients

The iterative minimization method presented in Sec.
II requires a choice of an embedding error function with
continuous first derivatives. In this work we consider the
least squares error function

E = c
n

∑
j=1

n

∑
k= j+1

c jk
(
d jk−aδ jk

)2
. (16)

We note that (16) is a general form from which several
special embedding error functions can be obtained by
substituting appropriate values of the constants c, c jk,
and a. Examples include:
• Absolute Differences Squared (ADS)

E =
n

∑
j=1

n

∑
k= j+1

w jk
(
I jk
(
d jk−aδ jk

))2 (17)

• Relative Differences Squared (RDS)

E =
n

∑
j=1

n

∑
k= j+1

w jk

(
I jk

d jk−aδ jk

aδ jk

)2

(18)

• Sammon Stress Criterion (SAM)

E =
1

a
n

∑
j=1

n

∑
k= j+1

I jkδ jk

·
n

∑
j=1

n

∑
k= j+1

w jk

(
I jk
(
d jk−aδ jk

))2

aδ jk

(19)
As the most general case of (16), individual importance
dependent on the input dissimilarities can be assigned to
the pairwise error terms using the the weights terms w jk.

MDS-PD also requires calculation of the gradient of
the error function. For a general error function, closed
form symbolic derivatives may or may not exist, and
in the latter case one can resort to approximating the
gradient using finite difference calculations. Numerical
approximation may also incur lower computational cost
than the formal derivatives. However, the use of nu-
merical derivatives can introduce additional convergence
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problems due to limited machine precision.
For the sum (16), both approaches are possible. A

symbolic derivation of the gradient of (16), including
both the Euclidean and hyperbolic cases, can be easily
carried out and is omitted here for brevity. From the
obtained result, symbolic derivatives of (17)–(19), as
well as any other special cases derivable from (16) can
be obtained by substituting appropriate constants.

B. Local vs. Global Minima

MDS-PD, being a steepest descent method that termi-
nates at near-zero progress, can find a stationary point
of the objective function. In the least squares case, if the
value at the returned solution is close to zero (that is,
E < εE), then the final configuration can be considered
a global minimizer that embeds the input metric with
no error. In all other cases, a single run of MDS-
PD cannot distinguish between local and global points
of minimum or between a minimizer and a stationary
point. A traditional way of getting closer to the global
minimum in MDS is to run the minimization multiple
times with different starting configurations. Expectedly,
there will be accumulation of the results at several
values, and the more values are accumulated at the lowest
accumulation point, the better the confidence that the
minimal value represents a global minimum i.e. the least
achievable embedding error.

C. Input Data Curvature Matching

The objective functions used in metric Euclidean
MDS are typically constructed to be scale-invariant in
the sense that scaling the input dissimilarities and the
coordinates of the output configuration with the same
constant factor a does not change the embedding error.
This is possible for Euclidean space since the Euclidean
distance function scales by the same constant factor as
the point coordinates: (∑L

s=1(a ·y js−a ·yks)
2)1/2 = a ·d jk.

Thus, for example, if d jk is the Euclidean distance, then
the sums (18) and (19) are scale-invariant, whereas (17)
is not. However, when d jk is the hyperbolic distance
function (2), none of the (17)–(19) is scale-invariant.
Therefore, the simplest ADS error function (17) may be
a preferable choice for reducing the computational cost
in the hyperbolic case. Nevertheless, for our numerical
experiments we choose to apply the Sammon criterion
(19) so as to facilitate numerical comparison between
the final embedding errors for the Sammon map in the
Euclidean plane and MDS-PD.

The lack of scale-invariance of the hyperbolic distance
formula (2) implies an additional degree of freedom

in the optimization of the embedding error – the dis-
similarity scaling factor. In Eqs. (16)–(19) this extra
degree of freedom is captured via the parameter a that
scales the original entries of the dissimilarity matrix. The
dependency of the embedding error of MDS-PD on the
dissimilarity scaling factor a varies with the type of input
data and is investigated in more detail in Section IV.

IV. MDS-PD: EXPERIMENTAL RESULTS

Following the specification in the previous sections,
we successfully implemented MDS-PD with the error
functions (17)–(19). In this section we show a few
illustrative results of our experimental study using MDS-
PD on synthetic as well as real-world data. Some of
the methods we used to verify the correctness of our
specification are also discussed below.

A. An Illustrative Example

As a first example, we used a random configuration
of seven points in the Poincaré disk. We populated the
input dissimilarity matrix with the hyperbolic inter-point
distances and started MDS-PD from another randomly-
generated seven point initial configuration in the PD. Fig.
5 shows the trajectories traveled by the points during
the minimization. The clear points denote the initial
configuration and the solid points represent the final
point configuration. Fig. 6 shows the MDS-PD internal
parameters vs. the iteration number for this example: In
Fig. 6a, the embedding error E monotonically decreases
with every iteration; the iterations terminated with the
E < εE = 10−6 condition, which means that likely the
output configuration represents the global minimum and
the final inter-point distances match the input dissim-
ilarities very closely. The step-size parameter r was
initialized with a value of 1 and assumed only values
of the form 2k, for integral k (Fig. 6b). The exponential
character of the change of r according as {4.1} and
{4.2} (Fig. 4) ensures the low computational cost of
the line search subprogram and in our numerical studies
proved superior to other line-search strategies, including
exact search or adaptive approximate step-size parameter.
The refining of the step size as the current configuration
approaches a local minimum of the error function, on the
other hand, is achieved by the decrease of the gradient
norm. This is further illustrated in Figs. 6c and 6d.

B. Scaling of Synthetic Data

To investigate the dependency of the embedding error
on the dissimilarity scaling factor a, we used as input the
inter-point distances obtained from random sets of points
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Figure 5. The minimization trajectory for a seven point configura-
tion using MDS-PD. The clear and the solid points are respectively
the initial and the final point configuration.
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Figure 6. The MDS-PD internal parameters vs. the iteration number
for the seven point example of Fig. 5: (a) the embedding error E, (b)
the step-size parameter r, (c) the norm of the gradient ‖g‖

∞
, and (d)

the step-size parameter relative to the maximum allowed value r/rM .

residing on surfaces of constant positive, zero or negative
curvature (i.e. respectively a sphere, a Euclidean plane
and the Poincaré disk model of the hyperbolic plane.)
The corresponding distances (spherical, Euclidean and
hyperbolic) for all pairs were used as dissimilarities
in this experiment. The embedding error function was
the Sammon criterion (19). We also used noisy inputs
obtained by replacing each original dissimilarity δ jk

with a random number uniformly distributed in the
interval

[
(1− em)δ jk, (1+ em)δ jk

]
for a chosen noise

level em < 1.
Fig. 7 shows the typical effects of dissimilarity scaling

for several Euclidean, spherical, and hyperbolic graphs.
Cases (a), (c), and (e) illustrate the variation of the em-
bedding error for noiseless input data, with the number
of points as a parameter (20 and 60 points.) Cases (b),
(d), and (f) illustrate the variation of the embedding error
for noisy input data and are parametrized by the amount
of measurement noise (em = 0,10,20,30%.) Each point
in the diagrams (a)–(f) was obtained as a minimum
Sammon stress in a series of 70 replicates of MDS-PD
for different randomly chosen initial configuration in the
PD. The smoothness of the obtained curves demonstrates
that for the chosen problems, this number of replicates
was enough to approach the global minimum achievable
embedding error for each simulated value of a. The
results are drawn on semilogarithmic axes in order to
show more details toward small a values.

Locally, the Poincaré disk model, distance-wise “looks
like” the Euclidean plane scaled with some constant
factor. For example, in the vicinity of a point z0, the
hyperbolic distance formula (2) becomes dD (z j,zk) ≈∣∣z j− zk

∣∣ ·2/(1−|z0|2). Therefore, for a sufficiently small
scaling factor a and sufficiently many replicates, metric
MDS implementations for the PD model and for the
Euclidean plane using the same scale-invariant (for Eu-
clidean distances) error function, should return approx-
imately equal embedding errors for the final configura-
tions. (A sufficiently small value of a is one that would
make the final configuration land in a sufficiently small
neighborhood of a point in the PD.) In this sense, MDS-
PD is a generalization of an Euclidean MDS algorithm.
We used these observations to verify that our MDS-
PD implementation returned the expected error values
for small scaling factors. Indeed, as Fig. 7 shows, for
small a values, the Euclidean graphs were embeddable
with no error, and the other two graph types had stress
that numerically matched the output of other available
Euclidean MDS implementations using the Sammon
stress criterion.

In the cases (e) and (f), the original configurations
are residing on a hyperbolic plane, and therefore are
embeddable with zero stress in the PD model for some
value of a (a = 1 in this synthetic example). For this
value, our implementation of MDS-PD was able to
find the original configuration up to hyperbolic-distance
preserving Möbius transformations. The existence of
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Figure 7. Effects of dissimilarity scaling for Euclidean, spherical,
and hyperbolic graphs. Figures (a), (c), and (e) show the variation
of the embedding error for noiseless input data, with the number of
nodes as a parameter. Figures (b), (d), and (f) show the variation of
the embedding error for noisy input data parametrized by the amount
of measurement noise.

graphs with a hyperbolic “underlying structure” that are
embeddable with notably lower stress in 2-dimensional
hyperbolic than in 2-dimensional Euclidean space is an
important illustration of the usefulness of MDS in the
Poincaré disk. Candidate graphs having such hyperbolic-
like structure are real-world communication or social
networks that tend to have a strongly interconnected core
and a sparser periphery of tendrils. MDS-PD can be
used in such contexts to investigate the “hyperbolicity”
of the input data and arrive at lower stress dissimi-
larity embedding. The diagrams (b), (d), and (f) (Fig.
7) also demonstrate that relatively high noise levels
in the measured data do not significantly change the
suitability for embedding in the PD in the cases when
the original dissimilarity matrix has a natural underlying
2-dimensional space.

C. Real-World Graph Examples

To further demonstrate the ability of the Poincaré disk
to accommodate lower stress 2-dimensional embeddings
than classical Euclidean MDS for certain graph types, we
applied MDS-PD to dissimilarity matrices obtained from
several real-world datasets. In this section we summarize
the results.

1) The Iris Dataset: As a first experiment, we ap-
plied MDS-PD to the Iris dataset (Anderson 1935).
This classical dataset consists of 150 4-dimensional
points from which we extracted the Euclidean inter-
point distances and used them as input dissimilarities.
The embedding error as a function of the scaling factor
a is shown in Fig. 8. Each value in the diagram is
obtained as a minimum embedding error in a series
of 100 replicates starting from randomly chosen initial
configurations. Minimal embedding error overall was
achieved for a ≈ 4. The improvement with respect to
the 2-dimensional Euclidean case was 10%. The Iris
dataset is an example of dimensionality reduction of
an original higher-dimensional dataset that can be done
more successfully using the PD model.

2) Political Books: An interesting network was pre-
sented by Krebs (2008), who assembled a connectivity
graph of political books frequently bought together dur-
ing an election campaign. In the graph version we used,
there were 105 nodes representing books and a total
of 441 undirected, unweighted links between books that
were frequently bought together. We obtained dissimilar-
ities by assigning self-dissimilarity of 0, dissimilarity of
1 for co-purchased books and a missing (unknown) dis-
similarity for the remaining pairs and applied MDS-PD
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Figure 8. The effect of scaling of the dissimilarities on the
embedding error for the Iris Dataset (Anderson 1935). The input
dissimilarities are the Euclidean distances between pairs of original
points. This MDS-PD result reveals that the Iris dataset is better suited
for embedding to the hyperbolic plane that to the Euclidean plane.
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Figure 9. The embedding error as a function of the input scaling
factor for the network of political books (Krebs 2008). The input
dissimilarities are simply indicators of the presence or absence of
links between the network nodes. The political books network is an
example of unweighted, undirected real-world graph data that can be
embedded with lower error in the PD model than in the Euclidean
plane.

to the resulting dissimilarity matrix. We also conducted
the experiment using only the liberal and the conser-
vative subgraphs (43 and 49 points respectively). The
obtained minimum embedding error of 150 replicates
as a function of the scaling factor a is shown in Fig.
9. We note that there were remarkable gains of using
the PD model instead of the Euclidean plane. For the
overall graph, the minimal stress was 7.6 times smaller
than the Euclidean stress. The liberal and conservative
components alone achieved improvement of 8.8 and 9
times with respect to the Euclidean case.
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Figure 10. The embedding error as a function of the input scaling
factor for the network of citations (Newman 2001). The network is
an example of weighted graph data that can be encoded with lower
embedding error in the PD model than in the Euclidean plane. The
input dissimilarities are capturing the strength of the collaboration
between pairs of authors.

3) Citation Network: The citation network that we
used in this experiment was compiled by Newman (2001)
from bibliographies of review articles on networking.
We extracted the largest connected component from the
graph which consisted of 379 nodes representing authors.
There were 244 edges in the graph with weights s jk
representing the strength of the collaborative ties. We
have calculated dissimilarities from these data using
δ jk = const− s jk and applied the MDS-PD algorithm.
The obtained minimum embedding error of 50 replicates
as a function of the scaling factor a is shown in Fig. 10.
The overall minimum embedding error was 2.63 times
lower than the stress obtained using Euclidean MDS.

V. RELATED WORK

A multidimensional scaling algorithm for fitting dis-
tances to constant-curvature Riemannian spaces was
given by Lindman and Caelli (1978). This work uses
the hyperboloid model of the hyperbolic space which re-
quires an n+1-dimensional Euclidean space to represent
an n-dimensional hyperbolic space, and is less suitable
for visualization purposes in the case of the hyperbolic
plane.

The applicability of metric multidimensional scaling
in the Poincaré disk model of the hyperbolic plane
was studied by Walter (2004). The study focused on
the task of embedding higher-dimensional point sets
into 2-dimensional configurations for the purpose of
interactive visualization. It was demonstrated that the PD
has capacity to accommodate lower stress embedding
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Walter (2004) (left) vs. MDS-PD hyperbolic lines (right)

than the Euclidean plane. Several important pointers to
the difficulties one encounters in implementing such
algorithms were given, but a definite specification or
implementation was not provided.

The proposed method to convert the seemingly con-
strained optimization problem to an unconstrained one
(Walter 2004, Eq. 12) ensures that the moving configura-
tion would stay inside the model during the optimization.
However, this transformation fails to follow the distance
realizing (hyperbolic) lines, or even Euclidean lines. The
problem is illustrated in Fig. 11. The possibility that
the dissimilarity matrix has missing values was also
not addressed in this work, as the dissimilarities were
generated from higher-dimensional points. Inputs derived
from graph data, however, are typically sparse.

Shavitt and Tankel (2008) presented numerical exam-
ples illustrating that models of the hyperbolic space with
circular symmetry may be better suited than Euclidean
spaces for embedding network graphs with core-and-
tendrils structure. Their work concentrated on applica-
tions specific to communication networks where dissim-
ilarities for each pair of points are derived from the
lengths of the shortest paths in the graph. For such
applications, the authors’ insight about the choice of the
Poincaré disk model was that the shortest paths in the
studied networks often pass through the core and are
therefore longer than the straight-line distance, and this
observation empirically matches the behavior of distance
function in the chosen model. In order to avoid the
constrained nature of the coordinates in the PD, the
authors eventually resorted to the hyperboloid model of
the hyperbolic plane, omitting the details.

The “big-bang simulation” (BBS) numerical method
used in (Shavitt and Tankel 2008), is discussed in
(Shavitt and Tankel 2004). BBS is a variant of a steepest
descent method that models the point configuration as an

inertial system in a force-generating field. Termination
is guaranteed by introducing empirical dampening in
the mechanical system. The initial configuration in BBS
is always chosen to be a single point in which all
particles are collocated, ensuring a fair initial amount
of potential energy. Another heuristic feature of BBS
is that the objective function changes several times
during the minimization in a way that increases the error
sensitivity of the penalty terms. The particle inertia in
BBS in conjunction with a stepwise changing objective
function possibly allows the method to escape a few local
minima before termination. However, the advantages of
these heuristics in avoiding local minima, compared to a
computationally simpler, single phase minimization pro-
cedure, were not clearly demonstrated. It is conceivable
that the inertial minimum-avoiding mechanism, which
comes at an increased computational cost, may as well
cause the configuration to leave the global minimum, or
a lower local minimum before stopping in a higher one.
Finally, since BBS can only be started from one possible
initial configuration, it has a deterministic outcome once
the heuristic parameters such as friction and time slice
are chosen; with this choice, the possibility that the final
result is improved by restarting from different initial
conditions, is eliminated.

Numerous methods that are more likely to find a lower
minimum than the simplest repeated descent methods in
a single run have been contemplated in the numerical
optimization literature. However, to guarantee in general
that the global minimizer is found is difficult with any
such method. It may be necessary to resort to running the
sophisticated methods several times as well in order to
gain confidence in the final result. Since these methods
are usually computationally more complex or incorporate
a larger number of heuristic parameters, the incurred
computational and implementational costs often offset
the benefits of their sophistication.

VI. CONCLUSION

We developed the details of MDS-PD, an iterative
minimization method for metric multidimensional scal-
ing of dissimilarity data in the Poincaré disk model of the
hyperbolic plane. While our exposition concentrated on
a simple steepest descent minimization with approximate
binary hyperbolic line search, we believe that elements
of the presented material will also be useful as a general
recipe for transferring other, more sophisticated iterative
methods of unconstrained optimization to various models
of the hyperbolic space.
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We believe that the algorithm specification herein
allows for easy implementation and represents a useful
novel tool for the scientific community and that its
application will enable a wide range of scientific inquiry
spanning beyond the area of numerical optimization
methods.

Our initial numerical experiments using both syn-
thetic and real-world data suggest that MDS-PD achieves
significantly better results compared to its Euclidean
counterpart for naturally arising networks of interaction.
This behavior may ultimately be attributed to the less-
restricted axiomatic foundation of the hyperbolic geom-
etry compared to its Euclidean counterpart. Our results
justify the development effort and encourage future work
in the directions of generalizing this algorithm to higher-
dimensional models of the hyperbolic space, improving
its efficiency, and establishing novel uses and applica-
tions.
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